
1  As noted in the "Status of Amendments After Final"
section in Appellant's brief (at 3), which section the examiner
has indicated is correct (Answer at 1), an amendment (Paper No.
20) was filed on February 26, 1999, canceling claims 15-18.  This
amendment has not yet been formally entered. 

-1-

The opinion in support of the decision being entered today 
   is not binding precedent of the Board.

  Paper No. 26

UNITED STATES PATENT AND TRADEMARK OFFICE

____________

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

____________

Ex parte MICHAEL A. PERKS
____________

Appeal No. 2000-1238
Application 08/566,638

 ____________

ON BRIEF
____________

Before MARTIN, DIXON, and GROSS, Administrative Patent Judges.

MARTIN, Administrative Patent Judge.

DECISION ON APPEAL

This is an appeal from the final rejection of claims 

1-14 over prior art.1  We reverse.



Appeal No. 2000-1238
Application 08/566,638

-2-

The invention

The invention is a semaphore manager data structure for

managing semaphores in a multi-tasking computer system having a

storage means.  Figure 7 shows five different ways to allocate

semaphores to classes and objects in an object-oriented computing

system environment.  The rounded squares 70 represent Classes A,

B, and C.  Each circle 79 represents an object and the number in

each circle is the corresponding semaphore.  The "Global

Semaphore" allocation technique assigns the same semaphore

(i.e., Semaphore 1) to every object in all three classes.  The

"Semaphore per Group of Classes" technique assigns Semaphore 1 to

all of the objects in classes A and C and Semaphore 2 to all of

the objects in Class B.  The "Semaphore per Class" technique

assigns Semaphore 1 to all of the objects in Class A, Semaphore 2

to all of the objects in Class B, and Semaphore 3 to all of the

objects in Class C.  The "Semaphore per Group of Objects"

technique assigns Semaphore 1 to the first object in every class,

Semaphore 2 to the second object in every class, and so on, while

the "Semaphore per Object" technique assigns a unique semaphore

to every object.  The specification explains that these

allocation schemes 



Appeal No. 2000-1238
Application 08/566,638

-3-

can be viewed in terms of a granularity scale, with the
single global semaphore method as the least granular and the
one semaphore per object method as the most granular.  The
rest of the allocation schemes lie somewhere in the middle
of the granularity scale.  Incidentally, the most desirable
allocation scheme would consist of not too many semaphores
such that deadlock may become a problem and not too few
semaphores such that concurrency may be limited (or no
concurrency at all as in the case of the single global
semaphore method). 

Specification at 4, ll. 1-9.  Appellant's solution is to employ a

semaphore manager data structure which implements the following

assignment criteria: "a class can only be assigned to one

semaphore but a semaphore can be assigned to more than one class"

(id. at 5, ll. 19-21).  The advantages of this data structure  

include the number of actual semaphores that can be
controlled so that the computer system would not be
overwhelmed, the semaphore mapping can be performed
statically at the time of compilation or dynamically
during time of execution, potential deadlock situations
can be reduced due to the assurance that only one class
can request one semaphore at a time, and the semaphore
tracing or debugging capabilities can be enhanced
because all semaphores are managed centrally.

Id. at 5, ll. 21-28.  In addition to classes which include

objects, Appellant's preferred embodiment employs a semaphore

class and a semaphore manager class.  Id. at 10, ll. 18-21. 

A specific example, including sections 1-6, is given in the

specification at page 11, line 23 to page 12, line 33.  In

section 1, each of the five classes is assigned a unique index 



Appeal No. 2000-1238
Application 08/566,638

-4-

number 1-5, with index number 0 being specifically reserved for

the semaphore manager.  In sections 3 and 4, the semaphore

utilized by the semaphore manager is set to 0 and the remaining

three available semaphores are numbered 1 to 3, with semaphore 1

being assigned to MyClass 3, semaphore 2 being assigned to

MyClasses 1, 2, and 5, and semaphore 3 being assigned to

MyClass 4. 

The claims 

Claim 1 is representative:

1.  A semaphore manager data structure for
managing semaphores in a multi-tasking computer system
having a storage means, said data structure comprising:

a plurality of indices residing in said storage
means, wherein each of said plurality of indices
defines a corresponding class;

a plurality of semaphore numbers residing in said
storage means, wherein each of said plurality of
semaphore numbers defines a corresponding semaphore;
and

a mapping table residing in said storage means,
wherein said mapping table defines an assignment of
each of said semaphores to each of said classes by
utilizing said plurality of indices and said plurality
of semaphore numbers, wherein a class can be assigned
to only one semaphore and said semaphore may be
concurrently assigned to more than one class. 

The examiner's rejection



Appeal No. 2000-1238
Application 08/566,638

-5-

The examiner's rejections are based on the following patent

and publications:

Holt et al. (Holt) 5,394,551 Feb. 28, 1995

Grady Booch, Object-Oriented Analysis and Design 88, 89, and 360-
65 (Addison-Wesley Publishing Company 1994) (Booch)

D. Decouchant et al., A Synchronization Mechanism for an Object
Oriented Distributed System, 152-59 (IEEE 1991) (Decouchant)

Claims 1, 3, and 4 stand rejected under § 103(a) for

obviousness over Holt in view of Decouchant and Booch. 

Referring to Holt's Figure 1, Holt discloses using

semaphores in a data processing system having a plurality of

processing nodes which are interconnected by a communication

network and have access to shared resources, such as a shared

memory (col. 1, ll. 9-13).  Figure 2 shows that each node 

includes a processing unit 20 which has access to access shared

resources, such as areas of a shared memory (col. 2, ll. 16-42-

58).  Furthermore, 

[e]ach node includes a semaphore unit 22 which
controls access to the shared resources 21, using a set
of semaphore locations 23, a semaphore ownership table
24 and a semaphore queue 25.  Each node has its own
local copies of the semaphore locations and the
semaphore ownership table, and has its own semaphore
queue. 

Column 2, ll. 59-65.  Each shared resource has a particular

semaphore location associated with it (col. 2, ll. 66-67).  That

is, a different semaphore location is assigned to each shared



Appeal No. 2000-1238
Application 08/566,638

-6-

resource.  "The semaphore ownership table 24 consists of a number

of sections, one for each node.  Each section has a fixed number

of slots, each of which can hold an entry, defining the ownership

state of a particular semaphore."  Column 3, ll. 19-22. 

Specifically, each entry in the ownership table includes the

following two fields: (1) ADDRESS, which is the virtual address

of the semaphore location to which the entry relates; and

(2) STATE, which is the ownership state of the semaphore location

(col. 3, ll.  23-28).  The meanings of the ownership states are

defined as follows:

IDLE: the semaphore is not owned by any node. 
OWNED: the semaphore is owned by the local node. 
DISCARD: ownership of the semaphore has been relinquished. 
OTHER-OWNED: the semaphore is owned by a remote node. 
QUEUED: the semaphore has one or more suspended semaphore 
   operations in the queue 25. 

Column 3, ll. 39-47.  It is evident from these ownership state

definitions and the abstract, reproduced in part below, that a

semaphore cannot be concurrently owned by plural nodes: 

When a node requires a semaphore operation on a
particular semaphore, a semaphore message is broadcast
to all the nodes instructing them to perform the
semaphore operation on their local copies of the
semaphore.  If the semaphore is unowned, the node must
suspend the semaphore operation until the message
returns, so as to ensure correct chronology for the
semaphore operation.  If, however, the semaphore [is]
owned by this node, the node can perform the semaphore
operation without waiting for the message to return.
This speeds up the semaphore mechanism.  If the



Appeal No. 2000-1238
Application 08/566,638

-7-

semaphore is owned by another node, that other node
relinquishes ownership so that the semaphore operation
can be performed. 

(Emphasis added.)     

The examiner's case for obviousness is stated as follows:

Holt et al[.] refers to nodes and does not teach
classes.  Decouchant et al[.,] however, shows a
semaphore which can be concurrently assigned to more
than one class in an object-oriented environment
(subclassing and overloading, section 5 synchronization
and inheritance.) 

It would have been obvious to one of ordinary
skill in the art to provide semaphores for classes
since such semaphores reduce the number of processes
and allow efficient blocking of other objects. 

(Bolding omitted.)  Paper No. 13, at 3.  The remarks in the

Answer suggest the examiner is proposing to modify Holt's system

so as to employ object-oriented programming at the various nodes,

to assign object-oriented semaphores of the type taught by

Decouchant and Booch to single classes and multiple classes, and

to store the assignment information for the object-oriented

semaphores in Holt's semaphore ownership table 24, which also

stores ownership information about Holt's semaphores that are

associated with the shared resources.  Thus, the examiner reads

claim 1 on Holt as modified in the following manner:

Holt et al. shows a plurality of indices (section for
each node, col. 3 lines 19-20) residing in said storage
means, wherein each of said plurality of indices
defines a class . . . ;



Appeal No. 2000-1238
Application 08/566,638

-8-

a plurality of semaphore numbers (virtual address
of semaphore, col. 3 lines 26-27) residing in said
storage means, wherein each of said plurality of
semaphore numbers defines a corresponding semaphore;
and   

a mapping table residing in said storage means
(semaphore ownership table, col. 3 line 19), wherein
said mapping table defines an assignment of each of
said semaphores to each of said classes (semaphore
table defines the assignment of nodes to semaphores,
col. [3, lines] 19-46) by utilizing said plurality of
indices and said plurality of semaphore numbers and a
semaphore can be assigned to more than one class (a
semaphore can be owned by different nodes, col. 3[,]
lines 40-45.

(Bolding omitted.)  Paper No. 13, at 3.  

We agree with Appellant that the examiner has failed to

establish a prima facie case of obviousness.  The examiner has

not adequately explained, and it is not otherwise apparent to us,

why one skilled in the art, absent the guidance provided by

Appellant's disclosure and claims, would have been motivated to

(1) employ object-oriented programming in Holt's computing

system, (2) employ Decouchant's and Booth's object-oriented

semaphore techniques in Holt's system thus modified, and

(3) store the assignments of the object-oriented semaphores in

Holt's semaphore ownership table.  Even assuming for the sake of

argument that it is physically possible to combine the reference

teachings in the manner proposed by the examiner, that is an

insufficient basis for combining their teachings in the manner



Appeal No. 2000-1238
Application 08/566,638

-9-

proposed by the examiner or any other manner.  See In re Kotzab,

217 F.3d 1365, 1370, 55 USPQ2d 1313, 1316 (Fed. Cir. 2000) ("to

establish obviousness based on a combination of the elements

disclosed in the prior art, there must be some motivation,

suggestion or teaching of the desirability of making the specific

combination that was made by the applicant.  See In re Dance,

160 F.3d 1339, 1343, 48 USPQ2d 1635, 1637 (Fed. Cir. 1998).").  



Appeal No. 2000-1238
Application 08/566,638

-10-

Because the examiner has failed to establish the obviousness

of combining the reference teachings in the proposed manner, the

rejection of claims 1-14 is reversed.  

REVERSED

JOHN C. MARTIN            )
Administrative Patent Judge )

        )
        )

   )
JOSEPH L. DIXON             )  BOARD OF PATENT
Administrative Patent Judge )   APPEALS AND
                            )  INTERFERENCES
                            )

                                      )
      ANITA PELLMAN GROSS       )
 Administrative Patent Judge )



Appeal No. 2000-1238
Application 08/566,638

-11-

cc: 

Bracewell & Patterson, L.L.P. #25
Intellectual Property Law
P.O. Box 969
Austin, TX  78767-0969


